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Abstract

Activation of the kappa opioid receptor (KOR) contributes to the aversive properties of

stress, and modulates key neuronal circuits underlying many neurobehavioral disorders.

KOR agonists directly inhibit ventral tegmental area (VTA) dopaminergic neurons, contribut-

ing to aversive responses (Margolis et al. 2003, 2006); therefore, selective KOR antagonists

represent a novel therapeutic approach to restore circuit function. We used whole cell

electrophysiology in acute rat midbrain slices to evaluate pharmacological properties of four

novel KOR antagonists: BTRX-335140, BTRX-395750, PF-04455242, and JNJ-67953964.

Each compound concentration-dependently reduced the outward current induced by the

KOR selective agonist U-69,593. BTRX-335140 and BTRX-395750 fully blocked U-69,593

currents (IC50 = 1.2 ± 0.9 and 1.2 ± 1.3 nM, respectively). JNJ-67953964 showed an IC50 of

3.0 ± 4.6 nM. PF-04455242 exhibited partial antagonist activity asymptoting at 55% block-

ade (IC50 = 6.7 ± 15.1 nM). In 3/8 of neurons, 1 μM PF-04455242 generated an outward cur-

rent independent of KOR activation. BTRX-335140 (10 nM) did not affect responses to

saturating concentrations of the mu opioid receptor (MOR) agonist DAMGO or the delta opi-

oid receptor (DOR) agonist DPDPE, while JNJ-67953964 (10 nM) partially blocked DAMGO

and DPDPE responses. Importantly, BTRX-335140 (10 nM) rapidly washed out with com-

plete recovery of U-69,593 responses within 10 min. Collectively, we show electrophysiolog-

ical evidence of key differences amongst KOR antagonists that could impact their

therapeutic potential and have not been observed using recombinant systems. The results

of this study demonstrate the value of characterizing compounds in native neuronal tissue

and within circuits implicated in the neurobehavioral disorders of interest.

Introduction

One of the major challenges in drug development is predicting whole animal responses based

on pharmacological characterization in heterologous systems. Recent biological reports indi-

cate that the effect of drugs on G protein coupled receptor function in situ in brain tissue is not

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232864 December 29, 2020 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Margolis EB, Wallace TL, Van Orden LJ,

Martin WJ (2020) Differential effects of novel

kappa opioid receptor antagonists on dopamine

neurons using acute brain slice electrophysiology.

PLoS ONE 15(12): e0232864. https://doi.org/

10.1371/journal.pone.0232864

Editor: Bradley Taylor, University of Pittsburgh,

UNITED STATES

Received: April 22, 2020

Accepted: December 1, 2020

Published: December 29, 2020

Copyright: © 2020 Margolis et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data are available

at OSF, DOI 10.17605/OSF.IO/AURZ7.

Funding: EBM’s effort on this project was

supported by a grant from BlackThorn

Therapeutics to UCSF. TLW, LJVO, and WJM are

employees of BlackThorn Therapeutics, the funder

of this research, and played active roles in the

study design and preparation of the manuscript.

Competing interests: Competing interest: TLW,

LJVO and WJM are employees of BlackThorn

Therapeutics and have ownership interest (stock,

https://orcid.org/0000-0001-8777-302X
https://doi.org/10.1371/journal.pone.0232864
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232864&domain=pdf&date_stamp=2020-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232864&domain=pdf&date_stamp=2020-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232864&domain=pdf&date_stamp=2020-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232864&domain=pdf&date_stamp=2020-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232864&domain=pdf&date_stamp=2020-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232864&domain=pdf&date_stamp=2020-12-29
https://doi.org/10.1371/journal.pone.0232864
https://doi.org/10.1371/journal.pone.0232864
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17605/OSF.IO/AURZ7


reliably predicted from results in expression systems [1–6]. Therefore pharmacological charac-

terizations made in brain tissue likely relate better to behavioral outcomes than those made in

cell-based expression assays.

Interest in the kappa opioid receptor (KOR) as a target for therapeutic development has been

growing consistently as clinical and preclinical studies have identified its role in aversive behav-

ioral states. KOR agonists produce profound adverse effects in humans, specifically fatigue, seda-

tion, confusion, impaired concentration, and anxiety. Furthermore at higher concentrations

visual and auditory hallucinations and feelings of depersonalization have been reported [7, 8].

Homologous effects have been described in animal models (reviewed in [9]). Finally, blockade

or genetic deletion of the KOR significantly reduces aversive responses to stress [10–12], drug

withdrawal [13–15], and pain [16], and has antidepressant-like effects [17] in preclinical models,

suggesting that KOR selective antagonists could be useful therapeutic agents.

Historically, the known synthetic KOR antagonists, including the most widely used KOR

antagonist for laboratory research norbinaltorphimine (norBNI), have properties limiting

their clinical potential, including long lasting blockade of KOR agonist activity [18, 19]. These

long lasting effects have been alternatively attributed to prolonged retention time in the brain

[20] or a signaling process involving the activation of the c-Jun N-terminal kinase (JNK) path-

way [21, 22]. In addition, some possess poor selectivity for KOR over other opioid receptors

and have other off-target effects [23, 24]. Recently, new compounds have been synthesized to

overcome these limitations [25]. In particular, BTRX-335140 (1-(6-ethyl-8-fluoro-4-methyl-3-

(3-methyl-1,2,4-oxadiazol-5-yl)quinolin-2-yl)-N-(tetrahydro-2H-pyran-4-yl)piperidin-4

amine) has been reported to have a medication-like duration of action [26] and is currently in

clinical trials. PF-04455242 (2-methyl-N-((2’-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)

propan-1-amine; Pfizer) [27] and JNJ-67953964 (formerly LY2456302 / CERC-501) (S)-

3-fluoro-4-(4-((2-(3,5-dimethylphenyl)pyrrolidin-1-yl)methyl)phenoxy)benzamide) also have

been in clinical development as selective KOR antagonists.

In rats, the model species used here, KOR activation in the VTA is aversive and directly

inhibits the activity of dopamine neurons [28, 29]. Several brain regions that innervate the VTA

express mRNA for the endogenous KOR ligand, dynorphin, including ventral striatum, amyg-

dala, and lateral hypothalamus [30–32]. One hypothesis is that a major contributor to maladap-

tive aversiveness is dynorphin release from one or more of these inputs, inhibiting dopamine

neuron activity that KOR antagonist treatment would reverse, generating relief [33–35]. There-

fore, here we investigated properties of 4 synthetic KOR antagonists in VTA dopamine neurons,

a locus implicated in some of the proposed clinical indications for KOR antagonist treatments

[9]. We used an acute midbrain slice and whole cell electrophysiology preparation to evaluate

the potency, selectivity, and reversibility of a selection of recently developed KOR antagonists to

gain a better understanding of their pharmacologies in brain tissue.

Materials and methods

All animal protocols were conducted in strict accordance with the recommendations of the

National Institutes Health (NIH) in the Guide for the Care and Use of Laboratory Animals.

Research protocols were approved by the Institutional Animal Care and Use Committee (Uni-

versity of California at San Francisco, CA), approval ID AN169369-3B. Sacrifice via decapita-

tion was performed after deeply anesthetizing the rats with isoflurane to minimize discomfort.

Tracer injections

Male Sprague Dawley rats (27–29 d, 5 rats) were anesthetized with isoflurane and secured in a

skull stereotax. A glass pipette tip attached to a Nanoject II (Drummond Scientific, Inc.) was
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stereotaxically placed in the medial prefrontal cortex (mPFC) (from bregma (in mm): anteropos-

terior (AP), +2.6; mediolateral (ML), ±0.8; ventral (V), −4.0 from skull surface). Neuro-DiI (7% in

ethanol; Biotium) was slowly injected, 200 nL per side. All injection sites were histologically exam-

ined and only data collected from rats with on target injections were included in the analysis.

Slice preparation and electrophysiology

Recordings in retrogradely labeled neurons were made 7–8 d after surgery (~P35). For all other

experiments, male SD rats were used, P23 –adult, as indicated in Table 1. Rats were deeply anes-

thetized with isoflurane and then sacrificed by decapitation with a guillotine. Horizontal brain

slices (150 μm thick) were prepared using a vibratome (Leica Instruments). Slices were prepared

in ice-cold aCSF (in mM: 119 NaCl, 2.5 KCl, 1.3 MgSO4, 1.0 NaH2PO4, 2.5 CaCl2, 26.2 NaHCO3,

and 11 glucose saturated with 95% O2−5% CO2) and allowed to recover at 33˚C for at least 1 h.

Slices were visualized under a Zeiss AxioExaminer.D1 with differential interference contrast,

Dodt, and near infrared optics, and epifluorescent illumination to visualize DiI-labeled neurons.

Whole cell recordings were made at 33˚C using 3–5 MO pipettes containing (in mM): 123 K-glu-

conate, 10 HEPES, 0.2 EGTA, 8 NaCl, 2 MgATP, 0.3 Na3GTP, and 0.1% biocytin (pH 7.2, osmo-

larity adjusted to 275). Liquid junction potentials were not corrected during recordings.

Recordings were made using an Axopatch 1-D (Molecular Devices), filtered at 5 kHz and

collected at 20 kHz using custom procedures written for NIDAQ and IGOR Pro (National

Instruments and WaveMetrics, respectively). In control animals, neurons were selected from

throughout the VTA. All experiments were completed in voltage clamp, Vholding = −60 mV.

Input resistance and series resistance were measured once every 10 s with a 4 mV hyperpolar-

izing pulse. Any cells with more than 15% change in either measure during control periods

between drug response measurements were eliminated from the study. Agonists were applied

via pressure ejection (Smart Squirt, Automate, Inc.), 60 s per application, followed by 30 s of

control aCSF, from a 250 μm tip placed within 350 μm of the recorded cell. Agonist solutions

were loaded into the Smart Squirt at concentrations at least 10x saturating so that even with

diffusion a saturating concentration of agonist would reach the recorded cell.

Agonists, antagonists, ATP, GTP, and all other chemicals were obtained from Sigma or

Tocris Bioscience. KOR antagonists were provided by BlackThorn Therapeutics, Inc.

In vitro pharmacology at rat KOR

Cellular antagonist effects of BTRX-335140 and BTRX-395750 (0.3 nM– 0.3 μM) were assessed

in duplicate using in a rat recombinant CHO cell line using a cAMP-based time-resolved

FRET assay (Eurofins Cerep, France). Results were calculated as a percent inhibition following

application of the KOR agonist, (-)-U50,488 (3 nM).

Data analysis

Each agonist response was calculated as the difference in the Iholding between the 2 min just

prior to the agonist application and the 30 s around the peak response. Results are presented as

Table 1. Rat ages for recordings.

Dose Response (Fig 1) Selectivity (Fig 3) Washout (Fig 4) Wash in (Fig 5)

• <P60

◦# data points (# animals)

◦mean age

• 47 (16)

• P33

• 20 (5)

• P36

• 24 (11)

• P36

• 74 (24)

• P34

>P60, # data points (# animals) 24 (9) 10 (4) 11 (7) 39 (13)

https://doi.org/10.1371/journal.pone.0232864.t001
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mean ± SEM. Violin plots were constructed from the kernel density estimate of the data,

where the bandwidth of the kernel was set to the range of the data in the plot divided by 10.

Over 80% of concentration response experiments and wash-in measurements were made

blind to antagonist identity. Concentration response data were fit to a 4-parameter log-logistic

dose response model using the drc package in R, setting the upper asymptote to 100%, to esti-

mate IC50, its variance, and lower asymptote (maximum blockade). Paired t-tests, two tailed,

(vassarstats.net) were conducted to compare within cell baseline responses to MOR and DOR

agonists with responses to these agonists in the presence of the KOR antagonists. A small num-

ber of DAMGO responses observed here were inward currents, consistent with prior observa-

tions [1]; in order to include these responses in the statistical evaluation of whether the KOR

antagonists impacted the magnitude of the DAMGO responses, the paired t-tests were per-

formed on the absolute values of the responses. Washout was statistically evaluated with a lin-

ear mixed effects model (JASP). Levene’s test for homogeneity of variance and Kruskal-Wallis

rank sum test were performed in R to evaluate the wash in data. Statistical significance was set

at p< 0.05. Data are available on OSF (DOI 10.17605/OSF.IO/AURZ7).

Results

Concentration responses for the KOR antagonists

Responses of VTA neurons to pressure ejection application of a super-saturating concentra-

tion of the KOR agonist U-69,593 were measured in acute horizontal brain slices from rats

using whole cell electrophysiology in voltage clamp configuration. KOR activation under these

conditions activates K+ channels in many neurons, which in voltage clamp mode results in an

outward (positive) current deflection (Fig 1A). Approximately half of VTA dopamine neurons

are hyperpolarized by KOR activation [28], therefore each cell was tested for a U-69,593

response, and those that responded with an outward current were used to measure the efficacy

of an antagonist to block the response to subsequent re-application of U-69,593. In control

experiments of repeated U-69,593 testing without addition of antagonists, we found no evi-

dence for desensitization of the U-69,593 response in this preparation: the second responses

were 124 ± 7% the magnitude of the first responses (n = 9). For BTRX-335140, we measured

an IC50 of 1.2 ± 0.9 nM (Fig 1B). The lower asymptote of the fit approached 1.3% of baseline

U-69,593 response. Both 10 and 100 nM blocked the U-69,593 responses to less than 10% of

the baseline response. This is quite similar to our measurements in a CHO-based heterologous

system expressing rat KORs, where we found that BTRX-335140 had an IC50 of 3.2 nM for

blocking inhibition of adenylyl cylcase by (-)-U50,488 (3 nM). For a structurally related com-

pound in the same series, BTRX-395750, we measured an IC50 of 1.2 ± 1.3 nM and asymptot-

ing at 28.0% of baseline U-69,593 response (Fig 1B), a greater potency than was measured in

the heterologous system (IC50 = 48 nM).

Although PF-04455242 is reported to be a full antagonist in heterologous systems [36], we

found that it only partially blocked the U-69,593 responses in the electrophysiology assay (Fig

1B). We observed a maximal blockade asymptoting towards 45% of the baseline U-69,593

responses by 100 nM PF-04455242. The concentration of PF-04455242 that produced half of

the maximum effect for this antagonist is 6.7 ± 15.1 nM. These data indicate that PF-04455242

is a partial antagonist in this tissue.

We also studied the concentration response of JNJ-67953964, which yielded an IC50 of

3.0 ± 4.6 nM (Fig 1B). A surprising result in these experiments was that in the presence of

100 nM JNJ-67953964, a subset of neurons responded to U-69,593 with inward currents

instead of outward currents, indicating an off target impact of JNJ-67953964 on KOR sig-

naling. An inward current was also observed in 1 of 2 neurons tested for responses to U-
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69,593 in the presence of 1 μM JNJ-67953964 (-22.5% and 34.0% of baseline U-69,593

responses). These inward currents also drove the minimum asymptote to -27% of baseline

U-69,593 responses.

We have previously determined that KOR activation specifically inhibits VTA dopamine

neurons that project to the mPFC but not to the NAc [37]. To investigate the effects of KOR

antagonism on this specific circuit, we measured the concentration response of BTRX-335140

blockade of U-69,593 responses in VTA dopamine neurons that project to the mPFC. The

fluorescent tracer DiI was injected into the mPFC 7–8 days prior to ex vivo recordings, and

was detected in somata prior to patching (Fig 2A). Consistent with prior observations [37],

outward currents were observed in response to U-69,593 in VTA neurons that project to the

mPFC, and these responses were blocked by BTRX-335140 (Fig 2A and 2B). In these selected

neurons, the IC50 of BTRX-335140 was 1.4 ± 1.1 nM, similar to the IC50 determined among

non-projection-selected neurons (Fig 2C).

Fig 1. Concentration response relationships for blockade of U-69,593 induced K+ currents in VTA dopamine neurons by novel KOR antagonists. a Example

voltage clamp recording of an outward current in a VTA neuron in response to pressure ejection of the KOR agonist U-69,593. b Top row, structures of the 4 KOR

antagonists tested. Bottom row, concentration response curves for blockade of U-69,593 responses for four recently developed KOR antagonists. Number of replicates

for each concentration tested is indicated in parentheses. Fits were generated with a 4-parameter log-logistic dose response model. Grey dashed lines indicate the

concentration required to block 50% of the baseline U-69,593 responses. Data shown as mean ± SEM.

https://doi.org/10.1371/journal.pone.0232864.g001

Fig 2. The KOR antagonist BTRX-335140 blocks U-69,593 responses in mPFC-projecting VTA dopamine neurons. a Example VTA neuron retrogradely labeled by

stereotaxic injection of DiI into the mPFC (left). This neuron responded to U-69,593 application, and this outward current was completely blocked by the KOR

antagonist BTRX-335140 (right). Across neurons (b), 100 nM BTRX-335140 significantly decreased the change in Iholding induced by U-69,593 (paired t-test, p = 0.03).

The concentration response relationship for BTRX-335140 specifically in VTA neurons that project to the mPFC (c) is similar to that measured among unselected

neurons (Fig 1B).

https://doi.org/10.1371/journal.pone.0232864.g002
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Selectivity of BTRX-335140 compared to JNJ-67953964 for KORs

To evaluate the selectivity of BTRX-335140 and JNJ-67953964 for KORs over MORs and DORs,

we tested their ability to block selective agonist-induced responses at these two receptors in VTA

neurons. Super-saturating concentrations of the MOR selective agonist DAMGO (10 μM) or the

DOR selective agonist DPDPE (10 μM) were pressure ejected onto VTA neurons in the same

manner as U-69,593. We have previously shown that DAMGO and DPDPE responses in VTA

neurons in acute brain slices do not desensitize [1, 2]. In responsive neurons, the agonist was re-

applied after 10 nM of either KOR antagonist had been bath applied for at least 4 min. This con-

centration of BTRX-335140, which acted as a full antagonist to block U-69,593 responses, did

not affect responses to DAMGO (n = 7, paired t-test t = +1.06, df = 6, p = 0.16) or DPDPE

(n = 8, paired t-test t = +0.25, df = 7, p = 0.4; Fig 3A). By contrast, a 10 nM concentration of JNJ-

67953964, which greatly diminished U-69,593 responses, consistently decreased responses to

DAMGO (n = 8, paired t-test t = +2.54, df = 7, p = 0.019) and to a smaller extent inhibited

responses to DPDPE (n = 7, paired t-test t = +2.25, df = 6, p = 0.033; Fig 3B).

Wash out of test antagonists

One major shortcoming of norBNI, the KOR antagonist used most broadly in preclinical stud-

ies, is the persistent effects of a single administration [20, 24]. A short acting, selective antago-

nist is not only useful for clinical development, but also for experimental designs that require

ligands to reverse rapidly enough for repeated administrations to have discernible effects. Here

we measured whether responses to U-69,593 recovered after 10 or 20 min of washout of the

novel antagonists. Concentrations of antagonists were chosen for their maximal blockade of

U-69,593 effects in the concentration response experiments.

In each experiment, a baseline U-69,593 response was measured, then the antagonist was

applied to the slice for at least 5 min. This interval and the antagonist concentration selected

were conditions sufficient to completely block U-69,593 responses, as observed in concentra-

tion response experiments shown above. U-69,593 responses were then probed 10 and/or 20

minutes after antagonist washout commenced, depending on the duration of the stability the

whole cell recording. As expected, application of a concentration of norBNI (100 nM) that we

have previously used to either fully block [28] or reverse [38] U-69,593 effects in VTA neurons

Fig 3. JNJ-67953964 is less selective for KOR over other opioid receptors compared to BTRX-335140 in VTA neurons. BTRX-

335140 (a) and JNJ-67953964 (b) were tested for off target blockade of MOR or DOR with the agonists DAMGO and DPDPE,

respectively. Neurons that responded with a change in holding current in response to DAMGO or DPDPE were re-tested with the

agonist in the presence of 10 nM of the antagonist (left panels of a and b). The small number of neurons that responded to DAMGO

with an inward current are illustrated here with triangles after taking the absolute value of the change in Iholding. All data were also

transformed to show the percent of the baseline response (right panel of a and b). Median percent of baseline shown in white circles,

mean shown in horizontal black bars, twenty fifth and 75th percentiles indicated by vertical black bars. �p< 0.05.

https://doi.org/10.1371/journal.pone.0232864.g003
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showed no reversal at 20 min of washout (Fig 4B). On the other hand, a 10 nM concentration

of BTRX-335140, sufficient to completely block U-69,593 actions (Figs 1B and 4A), showed

complete washout within 10 min (linear mixed model: df = 1,7, F = 92.3, p< 0.001). Interest-

ingly, BTRX-395750, which is structurally closely related to BTRX- 335140 (Fig 1B), did not

show clear reversal with up to 20 min washout (Fig 4B; linear mixed model: df = 2,2.91,

F = 1.3, p = 0.4). PF-04455242 persisted through 10 min, but did permit recovery of the U-

69,593 effect at 20 min (Fig 4B; linear mixed model: df = 2,12, F = 4.9, p = 0.03). JNJ-67953964

on average showed some apparent washout, but only to the extent that the inward currents

produced by U-69,593 in the presence of JNJ-67953964 in some neurons (Fig 1B) were not

observed at either washout timepoint (Fig 4B; linear mixed model: df = 2,2, F = 7.6, p = 0.1).

Wash in effects of test antagonists

In VTA slices, we have not observed effects of norBNI that would suggest either constitutive

activity at the KOR or endogenous dynorphin release in midbrain tissue from naïve animals

[28, 38]. Therefore, neutral antagonists at the KOR would not be expected to drive any change

in Iholding in voltage clamp recordings. Here we measured the change in Iholding following bath

application of each antagonist at multiple concentrations. We detected a borderline unequal

variance across antagonist-concentration groups (Levene’s test for homogeneity of variance,

F = 1.75, p = 0.05), therefore to be conservative we used a non-parametric test to evaluate dif-

ferences between groups; there was no significant difference between the means of these

groups (Kruskal-Wallis rank sum test χ2 = 18.4, p = 0.24). This raises the possibility that a

small subpopulation of neurons did respond to wash in of an antagonist with a shift in Iholding,

sufficient to increase the variance but not observed with a high enough frequency to drive a

significant difference in means. BTRX-335140 and BTRX-395750 wash in measures all showed

small variances across the concentrations tested, with means very close to zero (Fig 5B). Inter-

estingly, PF-04455242 did induce a shift in Iholding in a subset of neurons (at 100 nM, 2 of 8

neurons, at 1 μM, 4 of 8 neurons; Fig 5A and 5B). This change in Iholding, in all cases but one

outward in nature, was accompanied by a decrease in input resistance, consistent with a chan-

nel opening (Fig 5A). Given the intracellular and extracellular solutions used here, and that the

Fig 4. Washout of some novel KOR antagonists can be detected in VTA dopamine neurons. a Data from 3 different

example neurons showing that 10 nM BTRX-335140 blocked U-69,593 responses, and this blockade reversed following

10 min of antagonist washout. b Summary across all neurons and antagonists showing that only BTRX-335140

reverses within 10 min. The partial antagonism of PF-04455242 reversed at 20 min. Number of observations indicated

in parentheses. “In antagonist” data are same as in Fig 1. Mean ± SEM shown in panel b. �p< 0.05, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0232864.g004
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neurons were clamped at Vm = -60 mV, the outward currents are most likely K+ mediated,

such as through a G protein coupled inwardly rectifying K+ channel (GIRK). GIRK is the typi-

cal postsynaptic coupled ion channel for opioid receptors, however, since every neuron tested

in these wash in experiments responded to the KOR agonist U-69,593, yet only a subset of

them show this response to PF-04455242, it is unlikely that these currents are due to activation

of KORs. We also observed a possible inward current in a small subpopulation of neurons spe-

cifically at the 10 nM concentration of JNJ-67953964 (3 of 13; Fig 5B).

Discussion

Here we tested the potency, selectivity, and reversibility of several recently developed KOR

antagonists using electrophysiological measurements in acute rat brain slices. This preparation

has the advantage of measuring ligand actions at receptors expressed endogenously in the

mammalian brain. We selected the VTA dopaminergic neurons for profiling these molecules

because this is a brain region where KOR agonists produce potent aversive actions, and

because many other GPCRs are also expressed in VTA neurons, increasing the likelihood that

any off-target effects of these ligands could be detected. In fact, this approach did reveal some

unpredicted properties of some of these putative KOR antagonists. Further, it enabled us to

test for reversal during washout, neural modulation with wash in, and off target blockade of

endogenously expressed MORs or DORs. BTRX-335140 in particular was potent (1.2 nM

IC50), showed rapid reversal of KOR antagonism in washout, and lacked MOR or DOR antag-

onist effects at the concentrations tested. In preclinical studies [26], BTRX-335140 showed oral

efficacy in target engagement measures and is currently in clinical development.

BTRX-395750 also exhibited <10 nM potency at the KOR in this preparation, however it

showed no significant washout of KOR blockade up to 20 min. This is interesting given that

this molecule is within the same chemical series as BTRX-335140 and they are structurally

closely related. Understanding how the specific differences in the structures affect the mole-

cules’ orientations in the KOR binding pocket may inform what receptor-ligand interactions

contribute to receptor residence times for the KOR. This is particularly interesting given the

anomalously long duration of action of not only norBNI, but also the nonmorphinan KOR

antagonist JDTic [21].

Fig 5. Among novel KOR antagonists, PF-04455242 stands out as activating a current. a Current (top) and input resistance (bottom) of example

voltage clamp recording. This neuron responded to U-69,593 with a small outward current and decrease in input resistance. This neuron responded to

PF-04455242 with a larger outward current and concurrent decrease in input resistance in a concentration dependent manner. b Summary of all

changes in holding current in response to bath application to a range of concentrations of each KOR antagonist. No significant difference between the

means of the groups was detected. Median percent of baseline shown in white circles, mean shown in horizontal black bars, twenty fifth and 75th

percentiles indicated by vertical black bars.

https://doi.org/10.1371/journal.pone.0232864.g005
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PF-04455242 showed some unexpected results in the characterization studies performed

here compared to previously described pharmacological properties [27, 36]. First, we found

it to only have partial antagonist action, with maximal blockade of the U-69,593 response

plateauing at approximately 50%. We also found that PF-04455242 appears to activate a K+

conductance on a subset of the recorded cells. It is unlikely that these responses were due to

activation of KOR, since all of the neurons tested with the compound initially responded to

U-69,593. Consistent with these responses not being due to KOR activation, in HEK293

cells expressing KOR, PF-04455242 did not generate extracellular signal-regulated kinase
(ERK) phosphorylation and induced minimal c-Jun N terminal kinase (JNK) phosphoryla-

tion compared to other KOR antagonists [21]. This compound was reported to have only

moderate binding selectivity for KOR over MOR in radioligand displacement studies in rat

brain tissue [36]. Together, these observations indicate PF-04455242 is quite different from

a neutral KOR selective antagonist.

JNJ-67953964 effects have been explored in a variety of preclinical and human studies. It

is brain-penetrant and well tolerated in humans [39–41], including in people in early absti-

nence from cocaine dependence [42]. In heterologous systems this compound acts as a neu-

tral antagonist at KOR and at higher concentrations also blocks MOR [23]. However in our

acute brain slice preparation, we detected an unexpected effect at the KOR in a subset of

neurons, wherein JNJ-67953964 at 100 nM switched the expected outward current driven

by KOR activation to an inward current. This change in signaling appeared to wash out

acutely within 10 min. It is unclear if this change in signaling is due to a JNJ-67953964 inter-

action with KOR, or through an action at another receptor. Since this switch was not uni-

form across all neurons tested, a direct action at KOR seems insufficient to explain how this

effect would only be observed in a subset of neurons. While this effect is unique compared

to the other antagonists investigated here, since it was only observed at relatively high con-

centrations, it may not be a major concern following systemic drug administration. On the

other hand, it may be a confound in animal studies where JNJ-67953964 is centrally admin-

istered e.g. [43]. In our selectivity experiments, we also saw modest blockade of our

DAMGO and DPDPE induced effects at just 10 nM JNJ-67953964. While some MOR antag-

onism has been reported for this compound previously [23, 40], we were surprised to detect

it at this concentration, which did not achieve full KOR blockade in this preparation. Wash

in of JNJ-67953964 seemed to generate an inward current in a subset of neurons, and sur-

prisingly this was observed more often at 10 nM than at 100 nM. We previously found that

a small subset of VTA neurons respond to nociceptin/orphanin FQ with an inward current

only at low concentrations, peaking at 10 nM [44], and CRF also increases VTA glutamater-

gic EPSCs at lower concentrations and inhibits them at higher concentrations [45], making

such a pattern not entirely unprecedented. Together, these observations indicate potentially

important, unanticipated properties of JNJ-67953964.

Here we characterized the pharmacological properties of putative reversible, KOR selec-

tive antagonists using whole cell recordings in acute brain slices. Our results provide novel

and in some cases surprising findings on how these compounds work in individual neurons

that endogenously express KORs. In particular, this approach enabled us to (1) better iden-

tify the activity of these compounds at the KOR and (2) identify off-target effects of these

compounds that were not previously understood. Not only does this work reveal the func-

tional differences between these compounds that inform their use in both preclinical studies

and clinical development, this study provides direct evidence that electrophysiology in the

acute brain slice preparation enables detection of molecular properties of novel compounds

that are not easily detected in conventional heterologous receptor expression systems used

for drug screening.
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